关灯
收起左侧

讲座预告丨暨南经院学术系列活动之统计学系列 Seminar 第84期:林路(山东大学)

0
回复
802
查看
[复制链接]
发表于 2021-5-6 17:51:54 | 显示全部楼层 |阅读模式
 
主   题:Unified Rules of Renewable Weighted Sums for Various Online Updating Estimations
主讲人:林路教授(山东大学)
主持人:杨广仁教授
会议时间:2021 年 5 月 10 日(周一)上午10:00—11:00
会议地点:暨南大学石牌校区经济学院(中惠楼)208室

摘   要:

We establish unified frameworks of renewable weighted sums (RWS) for various online updating estimations in the models with streaming data sets. The newly defined RWS lays the foundation of online updating likelihood, online updating loss function, online updating estimating equation and so on. The idea of RWS is intuitive and heuristic, and the algorithm is computationally simple. We choose nonparametric model as an exemplary setting. The RWS applies to various types of nonparametric estimators, which include but are not limited to nonparametric likelihood, quasi-likelihood and least squares. Furthermore, the method and the theory can be extended into the models with both parameter and nonparametric function. The estimation consistency and asymptotic normality of the proposed renewable estimator are established, and the oracle property is obtained. Moreover, these properties are always satisfied, without any constraint on the number of data batches, which means that the new method is adaptive to the situation where streaming data sets arrive perpetually. The behavior of the method is further illustrated by various numerical examples from simulation experiments and real data analysis.

★主讲人简介★


林路,现任山东大学金融研究院教授、博士生导师,教育部应用统计专业硕士教育指导委员会成员,山东省政府参事等职务。主要从事大数据、高维统计、非参数和半参数统计以及金融统计等方面的研究。在国内外统计学、机器学习和数学领域顶级期刊(包括 Annals of Statistics, Journal of Machine Learning Research, 《中国科学》)和其它重要期刊发表研究论文120余篇;主持过多项国家自然科学基金课题、博士点专项基金课题、山东省自然科学基金重点项目等;曾荣获国家统计局颁发的统计科技进步一等和二等奖(排名第一),山东省优秀教学成果一等奖(排名第一)。

回复

使用道具 举报

 
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

关闭

站长推荐上一条 /2 下一条



关注我们:微信订阅号

官方微信

APP下载

公司服务热线:

15302378296

公司地址:广州市天河区五山路141号尚德大厦A座2115室(离暨南大学西门480米)

运营中心:广州市天河区五山路141号尚德大厦A座2115室(离暨南大学西门480米)

邮编:510630 Email:jnukaoyan@foxmail.com

Copyright   ©2015-2016  暨大考研论坛技术支持:考研粤     ( 粤ICP备2022125255号 )