主 题:Unified Rules of Renewable Weighted Sums for Various Online Updating Estimations 主讲人:林路教授(山东大学) 主持人:杨广仁教授 会议时间:2021 年 5 月 10 日(周一)上午10:00—11:00 会议地点:暨南大学石牌校区经济学院(中惠楼)208室
摘 要:
We establish unified frameworks of renewable weighted sums (RWS) for various online updating estimations in the models with streaming data sets. The newly defined RWS lays the foundation of online updating likelihood, online updating loss function, online updating estimating equation and so on. The idea of RWS is intuitive and heuristic, and the algorithm is computationally simple. We choose nonparametric model as an exemplary setting. The RWS applies to various types of nonparametric estimators, which include but are not limited to nonparametric likelihood, quasi-likelihood and least squares. Furthermore, the method and the theory can be extended into the models with both parameter and nonparametric function. The estimation consistency and asymptotic normality of the proposed renewable estimator are established, and the oracle property is obtained. Moreover, these properties are always satisfied, without any constraint on the number of data batches, which means that the new method is adaptive to the situation where streaming data sets arrive perpetually. The behavior of the method is further illustrated by various numerical examples from simulation experiments and real data analysis.
★主讲人简介★
林路,现任山东大学金融研究院教授、博士生导师,教育部应用统计专业硕士教育指导委员会成员,山东省政府参事等职务。主要从事大数据、高维统计、非参数和半参数统计以及金融统计等方面的研究。在国内外统计学、机器学习和数学领域顶级期刊(包括 Annals of Statistics, Journal of Machine Learning Research, 《中国科学》)和其它重要期刊发表研究论文120余篇;主持过多项国家自然科学基金课题、博士点专项基金课题、山东省自然科学基金重点项目等;曾荣获国家统计局颁发的统计科技进步一等和二等奖(排名第一),山东省优秀教学成果一等奖(排名第一)。
|